Egyptian Clays in the Treatment of Lubricating Oils

By SAMIR ELBADRAWY

Summary

This paper deals with the use of an Egyptian bleaching clay instead of the Russian clay used in the Petroleum Suez-Company, for the refining of the lubricating oils. The effect of different clays on the adsorption of different group compounds was studied by adsorption analysis.

This problem was studied by the author to replace the Russian clay, by other sorts of Egyptian clays, in the treatment of lubricating oils, which were produced in Suez. The Egyptian clays were collected from different places and were compared with other world clays, such as that from Germany, Rome and USSR.

Experiment No. I

As a first experiment, a diesel oil cut from the Arabian Ras Tanura crude, which was delivered from the Suez Refinery, was used. This diesel cut (number I) had the following physical constants:

Specific gravity 15/4 °C	0.8715
Flash point P.M.C.C. °F	215
Viscosity Saybolt at 100 °C in sec.	56
Viscosity Saybolt at 210 °C in sec.	41
Viscosity index	274
Pour point °F	56
Aniline point °C	76
Sulphur content (wt %)	1.78
Unsaturates (wt %)	29
Refractive index n _D 70 °C	1.4775

Different bleaching agents were used to bleach the diesel oil, such as, silica gel, aluminium oxide, activated charcoal, Russian natural clay and the Egyptian Ras Ghareb clay. Each decolourising material was used in the percentages of 2.0, 4.0, 6.0, 8.0 and 10.0 (wt %) to the diesel oil. The bleaching agent was mixed with the oil at 70 °C for 30 min. in every case¹). The refrac-

¹) H. LEONHARDT, Diplomarbeit, Leipzig 1960.

tive index at 70 $^{\circ}$ C was measured from the filtrate after the mixing time. As given in Table 1, the Russian clay had the highest bleaching power and the Egyptian Ras Ghareb, the lowest. This was clear from the refractive index which is inversely proportional to the degree of bleaching.

Percent weight of bleaching agent	Russian clay	Egyptian Ras Ghareb	Charcoal	Silica gel	Al ₂ O ₃
2	1.4730	1.4773	1.475 0	1.4760	1,4775
4	1.4726	1,4773	1.4747	1.4751	1.4770
6	1.4721	1.4770	1.4743	1.4748	1.4768
8	1.4718	1.4770	1.4736	1.4743	1.4765
10	1.4716	1.4770	1.4734	1.4740	1.4760

Table 1 Decrease of refractive index after bleaching (diesel cut I)

By the chemical analysis of the Russian and the Egyptian clay as given in Table 2, it was clear that the Russian clay had higher silica content than the Egyptian Ras Ghareb clay. It was also clear that the Russian clay had higher bleaching properties than silica gel, (see Table 1). This was due to the fact that adsorbability depends on the surface area and activity of the bleaching material.

Chemical Composition of two bleaching clays							
Contents	Percent weight in Russian clay	Percent weight in Ras Ghareb clay					
moisture	10.7	1.23					
loss at $1000 ^{\circ}\text{C}$	3.04	16.1					
silica	75.11	25.57					
Al_2O_3	5.16	9.8					
Fe ₂ O ₃	2.5	3.5					
CaO	1.86	22.3					
MgO	0.97	1,11					
CI-	0.028	2.8					
SO_4^-	0.46	17.5					

 Table 2

 Chemical Composition of two bleaching clays

Experiment No. II

These experiments were performed under the same conditions as in exp. no. I with a diesel oil cut from the arabian Ras Tanura crude of the following physical sonstants: (cut number II).

Specific gravity 15°/4°C	0.871
Flash point P.M. c.c. °F	245
Viscosity Redwood No I at 100 °C	50
Pour point °F	60
Unsaturates (wt %)	26
Aniline point °C	75.8

The bleaching agents, German, Romanian, Russian and the Egyptian (Aswan, Ras Ghareb, and Sina clays) were used. Each of these materials were used in a percentage of 10% by weight to the diesel oil cut.

As the refractive index is inversely proportional to the bleaching degree, it was clear from Table 3 that the German clay "Tonsil" is the most ideal one among these clays. The Egyptian Aswan clay was near in its bleaching power to the Russian clay. The Egyptian Ras Ghareb and Sina clays have the least decolourising power.

Table 3Refractive indices of diesel cut II after bleaching

Kind of elay	German	Romanian	Russian	Aswan	Ras Ghareb	Sina
Refractive index at 70 °C	1.4780	1.4782	1.4788	1.4791	1.4793	1.4795

By the chemical analysis of these different clays as given in Table 4, it was clear that Aswan clay had a high percentage of silica; but the German clay had the highest one.

The Aswan clay was acid activated, but the activation of the clay had no effect on rising the adsorbability.

Contents (wt %)	Aswan	Sina	German	Roman	
Moisture	2.4	0.35	5.2	7.1	
Silica	59.8	42.17	66.75	63.11	
Iron oxide	28.7	traces	2.43	2.0	
Al ₂ O ₃	mostly Al ₂ O ₃	43.87	15.02	8.11	
C1-		0.1	0.92	0.4	
SO_4^-		_		2.6	
CaO	0.51	-	1.62	7.7	

Table 4Chemical composition of 4 different clays

Experiment No. III

The Egyptian Aswan clay was mixed with the German clay "Tonsil" in percentages of 10, 20, 30, 40 and 50% by wt.

As shown in Table 5, the Aswan clay which contain 20% by weight German clay, had the same bleaching power as the Russian clay, but it needed 50% by weight German clay to be equal to the Romanian.

Table 5 Decrease of refraction after bleaching with Aswan and German clay										
Percent weight of the German clay in Aswan clay	t	0.0	10		20	30	40		50	100
Refractive index at 70 °C		1.4791	1.479		1.4789	1.4781	1.4787	' 1	1.4785	1.478

Experiment No. IV

As the Arabian Ras Tanura crude is used in the Suez-Company for the production of lubricating oils, the mazot of Ras Tanura was used to obtain the three following lubricating oil fractions

Non-viscous oil cut	$350\!-\!400^{\rm o}{\rm C}$
Neutral oil cut	$400-450^{\rm o}{\rm C}$
Viscous oil cut	$450\!-\!500^\circ\mathrm{C}$

Table 6								
General	Analysis	\mathbf{of}	\mathbf{the}	Arabian	Ras	Tanura	Lube	Oil-Fractions

	Boiling range of the fraction						
Test	$350-400^{\circ}\mathrm{C}$	400-450 °C	450-500 °C				
% wt in 700 sec-Mazot	11.76	14.62	17.66				
Spezific gravity	0.852	0.860	0.887				
Pour point °C	14.4	24.4	33.3				
Wax content % wt	11.6	11.5	14.22				
Solid point of wax °C	40.5	45.5	53.0				
Colour (union)	4.0	over 8	over 8				
Kin. Vis. at 70 °C	5.7	4.48	20.32				
Kin. Vis. at 80 °C	4.57	6.02	14.93				
Kin. Vis. at 90 °C	3.74	5.16	11.52				
Refractive Index (70 °C)	1.4978	1.4978	1.5702				
Conradson C. % wt.	0.06	0.217	1.22				
Anilin point °C	71.4	73.6	85.2				
Asphaltenes % wt	_		0.075				
Ash content % wt	Free	0.006	0.02				
Acidity IP	0.076	0.09	0.12				
Flash point °C clevland	187.8	121.1	195.1				

The physical properties of the cuts were given in Table 6.

The three cuts were analysed by adsorption chromatography on silica gel^2) of particle size 0.2 to 0.5 mm. The results were given in Table 7.

To find the effect of clay on the adsorption group compounds, German clay in 10% by weight from a non-viscous cut was used. The oil cut was analysed by adsorption chromatography, before and after bleaching (Table 8).

Table 7								
Constitution	\mathbf{of}	${\bf the}$	Arabian	Ras	Tanura	Lube	Oil-Fractions	

	350400 °C	400-450 °C	450-500 °C
Saturates % wt	59.1 60.5	60.5	62.3
Aromatics % wt	38.8	35.9	35.4
Resins % wt	1.8	1.6	1.8
Refraction of Saturates (70 °C)	1.4552	1.4605	1.4749
Refraction of aromatics (70 °C)	1.5678	1.5702	1.5822
Refraction of the original (70 °C)	1.4945	1.4978	1.5702

Table 8 The effect of clay treatment on the constitution of the oil (non viscous oil from Ras Tanura crude)

	before treatment	after treatment		
n ⁷⁰	1.4945			
Colour (union)	4.0	$2^{1}/_{4}$		
Aromaties % wt	38.8	38.0		
Resins % wt	1.8	0.7		
Saturates % wt	59.1	60.8		

The change in colour was measured by the union colorimeter. In other experiments the non viscous oil was treated with different clays in different mixing relations and the effect of bleaching on the oil fractions was found through adsorption chromatography (see Table 9).

As it was clear from Table 8 and 9 that the action of the clay was mainly on the adsorption of resins, therefore, the percentage of resins before and after treatment of the oil was used as a measure of the degree of adsorption of the different clays, (the aromatics were slightly affected) (see Table 9).

From the different clays used, it was clear that the German clay "Tonsil" was the most ideal one for bleaching purposes in oil-refining processes.

The Egyptian Aswan clay No. 1 was less in its bleaching power than the Russian clay as it was clear from the resin content after treatment of the

²) M. LEDERER, Chromatography, Elsevier Punl. Corp. 1955, p. 67.

Type of Clay used	% wt of Clay	Saturates wt %	Aromatics wt %	Resins wt %	Total wt %		
German	10	61.8	37.0	0.76	99.56		
$\frac{\text{Russian} + \text{German}}{(2:1)}$	5	61.2	37.2	1.3	99. 70		
Aswan 1 + German $(1:1)$	20	61.8	37.0	0.56	99.36		
Aswan $1 + German$ (2:1)	5	61.0	37.2	1.4	99.6 0		
German	1.7	60.0	37.8	1.65	99.45		
Kuom Imbo + German (2:1)	5	60.1	37.67	1.7	99.45		
$\begin{array}{c} \text{Aswan } 2 + \text{German} \\ (2:1) \end{array}$	5	61,1	37.8	1.7	99.60		

Table 9 Clay Treatment of Non Viscous Oil (Ras Tanura)

oil with the two clays. The resin content, after the Russian clay treatment, decreases from 1.8% by weight to 1.3%. It decreases to 1.4% after Aswan No. 1 clay treatment. The Kuom Imbo clay and Aswan No. 2 have a less adsorption effect on resins, i.e. on the improvement of the colour, than Aswan natural clay in its adsorbability.

Ras Ghareb and Sina clay could not be used as bleaching agents.

Conclusion

Finally Aswan clays have different adsorption powers and they must be well chosen and tested before it can be used in place of the Russian natural clay.

Thanks are due to the Suez-Petroleum-Company for given help and products.

Cairo (UAR), The National Research Centre — Cairo Petroleum Department.

Bei der Redaktion eingegangen am 15. März 1965.